See what's new in Datazone

Data Platform
with superpowers

Data Platform
with superpowers

Transform data management and AI with our cutting-edge platform. Say goodbye to manual tasks, embrace streamlined workflows, and unlock insights for informed decisions, all in a simplified, efficient way.

A preview of the Database web app
A preview of the Database web app
A preview of the Database web app
A preview of the Database web app
A preview of the Database web app
A preview of the Database web app

Made Easy

Ingest

Seamlessly integrate your data from multiple sources with Datazone's expansive offering of over +600 connectors. Streamline your data ingestion process, enabling your team to focus more on insights and less on gathering.

Connect Any Data Source

Seamlessly connect and ingest your data with just a few clicks

Connect Any Data Source

Seamlessly connect and ingest your data with just a few clicks

Connect Any Data Source

Seamlessly connect and ingest your data with just a few clicks

Connect Any Data Source

Seamlessly connect and ingest your data with just a few clicks

Connect Any Data Source

Seamlessly connect and ingest your data with just a few clicks

Transform Data

Develop

Leverage the power of Apache Spark, the industry-leading data processing engine, to effortlessly transform your data. With Datazone, you can turn raw data into valuable insights, powering your business decisions.


Build & Transform Data Pipelines Automatically

Datazone unifies your entire data pipeline journey. Ingest, transform, and automate with confidence - all in one powerful platform. Build and deploy end-to-end data pipelines in minutes, not months. No more context switching, just seamless data engineering.

PySpark

Python

SQL Query

Quick Integration in Minutes

Simplify your data source connections. Extract and configure with our intuitive interface. Connect multiple sources instantly, without complex configurations. Cut setup time from days to minutes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from datazone import Extract

orders_mysql_extract = Extract(

source_id="prod-mysql-db",

query="""

SELECT

order_id,

order_date,

customer_id,

product_id,

quantity,

unit_price

FROM orders

WHERE active = 1;

""",

output_dataset_name="orders",

)

Quick Integration in Minutes

Simplify your data source connections. Extract and configure with our intuitive interface. Connect multiple sources instantly, without complex configurations. Cut setup time from days to minutes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from datazone import Extract

orders_mysql_extract = Extract(

source_id="prod-mysql-db",

query="""

SELECT

order_id,

order_date,

customer_id,

product_id,

quantity,

unit_price

FROM orders

WHERE active = 1;

""",

output_dataset_name="orders",

)

Quick Integration in Minutes

Simplify your data source connections. Extract and configure with our intuitive interface. Connect multiple sources instantly, without complex configurations. Cut setup time from days to minutes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from datazone import Extract

orders_mysql_extract = Extract(

source_id="prod-mysql-db",

query="""

SELECT

order_id,

order_date,

customer_id,

product_id,

quantity,

unit_price

FROM orders

WHERE active = 1;

""",

output_dataset_name="orders",

)

Quick Integration in Minutes

Simplify your data source connections. Extract and configure with our intuitive interface. Connect multiple sources instantly, without complex configurations. Cut setup time from days to minutes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from datazone import Extract

orders_mysql_extract = Extract(

source_id="prod-mysql-db",

query="""

SELECT

order_id,

order_date,

customer_id,

product_id,

quantity,

unit_price

FROM orders

WHERE active = 1;

""",

output_dataset_name="orders",

)

Quick Integration in Minutes

Simplify your data source connections. Extract and configure with our intuitive interface. Connect multiple sources instantly, without complex configurations. Cut setup time from days to minutes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from datazone import Extract

orders_mysql_extract = Extract(

source_id="prod-mysql-db",

query="""

SELECT

order_id,

order_date,

customer_id,

product_id,

quantity,

unit_price

FROM orders

WHERE active = 1;

""",

output_dataset_name="orders",

)

Data Branching

Manage your data like code, experiment fearlessly and ensure only successful transformations make it to production branch.

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Schedule Your Data Pipelines

Automate your pipeline schedules with flexible intervals. Monitor and manage transformations in real-time. Ensure timely data delivery for business operations.

Notebook Environment

Data science workspace with interactive notebooks . Transform data, perform exploratory analysis, and share insights with your team in real-time

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build & Transform Data Pipelines Automatically

Datazone unifies your entire data pipeline journey. Ingest, transform, and automate with confidence - all in one powerful platform. Build and deploy end-to-end data pipelines in minutes, not months. No more context switching, just seamless data engineering.

PySpark

Python

SQL Query

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Transform with Ease

Define transformations using simple Python functions. Process your data efficiently with PySpark SQL integration.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

from datazone import Dataset, transform, Input

from pyspark.sql import functions as F


@transform(

input_mapping={"retail_data": Input(Dataset("retail-data"))},

materialized=True,

)

def report_data(retail_data):

transformed_df = (

retail_data.dropDuplicates()

.withColumn("total_amount", F.col("quantity") * F.col("unit_price"))

.groupBy("order_date")

.agg(

F.count("order_id").alias("total_orders"),

F.sum("total_amount").alias("daily_revenue"),

F.avg("total_amount").alias("avg_order_value"),

)

.orderBy("order_date")

)

return transformed_df

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build & Transform Data Pipelines Automatically

Datazone unifies your entire data pipeline journey. Ingest, transform, and automate with confidence - all in one powerful platform. Build and deploy end-to-end data pipelines in minutes, not months. No more context switching, just seamless data engineering.

PySpark

Python

SQL Query

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)

Build Your Own API

Create custom API endpoints with Python simplicity. Configure rate limits, pagination and filters for your data services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from datazone import Endpoint, Dataset

retail_data_endpoint = Endpoint(

name="retail-api",

source=Dataset("raw-retail-data"),

config={

"rate_limit": {"requests_per_minute": 100, "burst": 20},

"default_page_size": 20,

"filterable_columns": ["order_id", "order_date"]

},

path="/retail-data",

)


Build & Transform Data Pipelines Automatically

Datazone unifies your entire data pipeline journey. Ingest, transform, and automate with confidence - all in one powerful platform. Build and deploy end-to-end data pipelines in minutes, not months. No more context switching, just seamless data engineering.

PySpark

Python

SQL Query

Your Way

Serve

Make your data accessible and usable. With Datazone, serve data directly from our platform to your Business Intelligence tools via ODBC/JDBC or provide API access for 3rd party applications. Simplify data delivery, and make it work for you.

Query with SQL

Query billions of rows with sub-second performance. Manage complex analytical workloads with integrated ClickHouse engine.

Real-Time Data Streaming

Stream and process your data in real-time. Monitor live data flows and react instantly to changes

SQL Interfaces

Connect through familiar MySQL and PostgreSQL interfaces. Query your
data using standard SQL syntax and tools.

Connect through familiar MySQL and PostgreSQL interfaces. Query your data using standard SQL syntax and tools.

Multi-Protocol Data Access

Access your data through multiple protocols including JDBC, ODBC, and REST APIs. Enable easy integration with business intelligence tools, applications, and AI services.

Query with Integrated ClickHouse

Query billions of rows with sub-second performance. Manage complex analytical workloads with integrated ClickHouse engine.

Contact us

Ready to Elevate Your Experience? Get in Touch!

Contact us

Ready to Elevate Your Experience? Get in Touch!

Contact us

Ready to Elevate Your Experience? Get in Touch!

Contact us

Ready to Elevate Your Experience? Get in Touch!

Datazone

Simplified Data & AI Platform for Enhanced Productivity and Efficiency

© 2024 Datazone Technologies Limited. All rights reserved.

Datazone

Simplified Data & AI Platform for Enhanced Productivity and Efficiency

© 2024 Datazone Technologies Limited. All rights reserved.

Datazone

Simplified Data & AI Platform for Enhanced Productivity and Efficiency

© 2024 Datazone Technologies Limited. All rights reserved.

Datazone

Simplified Data & AI Platform for Enhanced Productivity and Efficiency

© 2024 Datazone Technologies Limited. All rights reserved.